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The hierarchical reference theory (HRT) of fluids is applied to the three-dimen- 
sional Ising model on a simple cubic lattice with nearest-neighbor ferromagnetic 
interaction via the equivalence with the lattice-gas model. The hierarchy is 
truncated to the first equation and closed with an Ornstein-Zernike ansatz for 
the direct correlation function embodying both thermodynamic consistency and 
on-site repulsion between lattice particles. The resulting equations are integrated 
numerically above and below the critical temperature and the results are 
compared with those obtained by closed-form approximants. We show that 
HRT yields nontrivial critical exponents with the correct scaling regime and a 
value of the critical temperature in very close agreement with the true one. At 
the same time it retains all the information about the short-range behavior of 
the system, and so gives a very accurate description also away from the critical 
point. Below the critical temperature as long as long-wavelength fluctuations are 
included in the system the van der Waals loop is suppressed and is replaced by 
a region where the compressibility is infinite, namely the coexistence region. 

KEY WORDS: Ising model; direct correlation function; critical behavior; 
coexistence region. 

1. I N T R O D U C T I O N  

A realis t ic  desc r ip t ion  of the cr i t ical  b e h a v i o r  of a f luid requi res  a careful  

t r e a t m e n t  of the l o n g - r a n g e  f luc tua t ions  a r i s ing  w h e n  we a p p r o a c h  the 
cri t ical  po in t .  At  the  s ame  t ime the s h o r t - r a n g e  cor re la t ions ,  which  d e p e n d  
o n  the specific form of the  in te rpa r t i c l e  in t e rac t ion ,  affect n o n u n i v e r s a l  

p roper t i e s  of the sys tem a n d  d o m i n a t e  a w a y  f rom the cri t ical  region.  I t  is 
t hen  clear  tha t  if we w a n t  to achieve a g o o d  desc r ip t ion  of a f luid over  the  
whole  phase  p lane ,  we m u s t  deve lop  a t heo ry  ab le  to deal  wi th  charac -  
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teristic lengths varying over a very wide range. The hierarchical reference 
theory (HRT) (1'2) is a microscopic theory of fluids explicitly devised to 
pursue such a nontrivial task. In this theory the attractive part of the 
interaction is turned on gradually in such a way that its long-wavelength 
Fourier components responsible for the critical behavior are included in 
the system only in the final stage of the process. The corresponding evolu- 
tion of the free energy and of the correlation functions of increasing order 
is then expressed by an infinite hierarchy of exact integrodifferential equa- 
tionsJ 1) The HRT shares with the renormalization group the idea of 
approaching the real system through a process in which fluctuations of 
increasing wavelength are gradually taken into account. On the other 
hand, it is based on the microscopic Hamiltonian of the system and retains 
all the information about short-range properties important away from the 
critical point and can thus be regarded as a genuine microscopic theory of 
the fluid state. 

It was previously shown (1) that a simple closure of the hierarchy 
assuming that the direct correlation function of the system is analytic in the 
wavevector k even at the critical point (the Ornstein-Zernike ansatz) yields 
nonclassical critical exponents with the correct scaling regime. Later (2) the 
same kind of closure was extended away from the critical region and 
the theory was applied to simple fluids above the critical temperature. 
The results were found to be in good agreement both with numerical 
simulations and experiments. 

It was already pointed out (~) that this theory could be reformulated for 
a system of particles on a lattice and could thus be applied to an Ising spin 
system by exploiting the well-known equivalence (see, e.g., ref. 3) between 
this model and the lattice gas. In the present work the HRT with a closure 
of the same class as the previous ones has been applied to the three- 
dimensional ferromagnetic Ising model on a simple cubic lattice with 
nearest-neighbor interaction. This application is of some interest because in 
the case of real systems comparing theoretical predictions with experimen- 
tal data may be not so straightforward due to the difficulty of modeling 
such systems with two-body interactions. The comparison with numerical 
simulations overcomes this difficulty, but finite-size effects make them not 
suited for use inside the critical region. For these reasons it is not very easy, 
e.g., to establish how accurately the critical temperature is predicted by the 
theory. For the Ising model, on the other hand, these difficulties do not 
arise because the predictions of the theory can be compared both inside 
and outside the critical region with a great deal of highly reliable results, 
such those yielded by approximants based on extrapolations of series 
expansions. (4, 5 ) 

Moreover, in the present work our theory has been applied also below 
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the critical temperature. This point is rather relevant because the first-order 
phase transition taking place in this region is considerably less investigated 
than the second-order one at the critical point. Most of the theories are not 
able to reproduce the strongly nonanalytic behavior of the thermodynamic 
functions below Tc and this gives rise inside the coexistence region to a 
negative value of the compressibility and hence to the so-called van der 
Waals loop, which is then artificially eliminated via the ad hoc Maxwell 
construction. In this work we will show that the HRT not only describes 
the system very accurately above To, but is indeed able to suppress such 
unphysical behavior and to yield an infinite value for the compressibility 
inside the whole coexistence region. 

The paper is organized as follows: in Section 2 the theory is reviewed 
and then the application to the lattice gas is described, in Sections 3 and 4 
the results obtained respectively above and below the critical temperature, 
expressed in terms of the usual magnetic quantities, are discussed and 
compared both with other theories and with closed-form approximants, 
and finally in Section 5 our conclusions are reported. In the Appendix 
our equations are derived in detail, paying particular care to the exact 
implementation of the core condition. 

2. T H E O R Y  

We consider a homogeneous system of particles interacting by a two- 
body potential 

v(r) = vR(r) + w(r) (1) 

where vR(r) contains the singular part of the interaction due to the short- 
range repulsion between particles, while w(r) is the attractive part which 
dominates at large distance. We assume that the properties of the system 
interacting via the potential vR(r) alone are known, so we can regard it as 
the "reference" system. Our aim is to treat accurately the long-range 
fluctuations responsible for the critical behavior of the completely interacting 
system: in the HRT this is achieved by turning on the attractive part of the 
interaction gradually, starting from shorter length scales. To this purpose, 
let us introduce a region f2 e labeled by a parameter Q which, during the 
evolution of Q, spans the whole momentum space from large to small 
wavevectors k, shrinking on the origin k = 0 at the end of the process. We 
can now define a potential we(r ) via its Fourier transform #e(k) in the 
following way: 

0, ke.Q o 
#e(k) = #(k), k r ~ e  (2) 
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where #(k) is the Fourier transform of  the full attractive potential w(r). 
Then Q plays the role of a long-wavelength cutoff; for example, the domain 
C2Q could correspond to k < Q and actually this would be the most natural 
choice in the case, different from the present one, of a system of particles 
interacting by a spherically symmetric potential, like the simple fluids 
studied in ref. 2. As Q evolves from its initial value Q; to "its final value Qi, 
the fully interacting system is approached, starting from the reference one, 
through a sequence of Q-systems with potentials given by 

va(r) = vR(r) + we(r) (3) 

The effect of the interaction between two Q-systems infinitesimally close to 
each other can be determined exactly by perturbation theory. This enables 
us to study the evolution of the free energy and of the correlation functions 
of the system as the interaction takes on its long-wavelength Fourier 
components. This evolution is described by an exact hierarchy of integro- 
differential equations involving correlation functions of increasing order. 
The first two equations of the hierarchy read ~1) 

~e  - - 5  jzQ (~-~)3 log ~1 cgQ(k)J (4) 

~Q (P)=-fzed~ {I~c4(P, -P,k, -k) 

c~(p, k, - p - k )  c~ ( -p ,  - k ,  p + k ! ]  

co( p + k) / 

• ~(k) ~ (5) 
c~o(k) [c~o(k ) - $(k)]  

In these equations CQ(k) and c~(kl,..., k,,) are respectively the two- and 
n-particle direct correlation functions of the Q-system in momentum space, 
including the ideal gas contribution, cQ(k) is related to the usual direct 
correlation function c~Z(k) defined by the Ornstein-Zernike relation by 

1 - +  c~Z(k) = cQ(k) (6) 
P 

where p is the density of the system. The integrals on the right-hand sides 
of (4), (5) are evaluated on the boundary ZQ of the region (2Q, &o is the 
surface element spanning ZQ, and ~(k) is the Fourier transform of the 
quantity ~(r) defined by 

w(r) 
q~(r) -- (7) kT 
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The quantities d o and ~Q(k) are related, respectively, to the free energy per 
unit volume aQ and to the direct correlation function in momentum space 
cQ(k) of the Q-system, the difference being that in the "modified" quantities 
the discontinuous contribution due to (~Q(k) has been eliminated: 

~Q= aQ 1 1 z ~  
kT 2P[qh(O)--q~Q(O)]+2 p [qS(0)--~Q(0)] (8) 

cdQ(k) = cQ(k) + (P(k) - ~o(k)  (9) 

We recall that the direct correlation function in momentum space CQ(k) is 
related to the usual structure factor SQ(k) by the relation co(k)=  
-1/pSQ(k). When Q reaches its final value Qf we have qsoi(r ) = ~(r), so 
that -kTdQ~ and <dai(k ) coincide, respectively, with the free energy per 
unit volume a and with the direct correlation function c(k) of the fully 
interacting system. At the beginning of the evolution of Q, on the other 
hand, g2Q = g2a, covers the entire momentum space and hence we have 
q0o i ( r )  = 0, aoi = aR, CQi(k ) = cR(k), where aR and cR(k) are the free energy 
per unit volume and the direct correlation function of the reference system. 
The modified quantities dQ, and ~Qi(k) then yield the usual random phase 
approximation to a and c(k). 

We want to apply our theory to the three-dimensional Ising model on 
a simple cubic lattice with ferromagnetic, nearest-neighbor interaction. The 
Hamiltonian is 

~ s  = - J  ~ s , s i - H ~ s  j (10) 
(i,j) j 

where the first sum is over nearest-neighbor sites, J >  0 is the coupling 
constant, s i=  _+1 is the spin variable on the i site, and H is the external 
magnetic field. We will exploit the standard result (e.g., ref. 3) that this 
model can be mapped into a fluid of particles on a lattice interacting by the 
potential v ( r i - r j )  defined as 

v ( r i -  rj) = w < 0 

r i - - - - r j  

i, j nearest neighbors 

otherwise 

(11) 

so that to every "magnetic" quantity related to the Ising model we can 
associate a corresponding "fluid" quantity. For example, J, H, and the 
magnetization per site M are given by 

w 
J 4 (12) 



1184 Pini e t  al.  

H = - ~  

M =  1 --2p (14) 

where q is the coordination number and # is the chemical potential of the 
lattice fluid. Here we assume the lattice spacing to be unity, so that the 
density p is the average number of particles per site. In the following we 
will refer to the "fluid" picture of the system for the application of the 
theory, and will then restate our results in magnetic terms. 

In (11) it is immediate to identity the reference potential vR(r) with the 
singular on-site repulsion causing each site to be occupied by at most 
one particle, and the perturbation with the attractive nearest-neighbor 
contribution. We have then 

~ ( k )  = )~?(k) (15) 

where we have defined 

1 
?(k) = ~ (cos kx + cos ky+ cos k~) (16) 

6 w  ,~ = - -  ( 1 7 )  
kT 

and k varies in the first Brillouin zone. The reference system is nothing but 
a hard-sphere lattice gas, which corresponds to a system of noninteracting 
spins. This system is immediately solvable and one obtains 

as= kT plogp+(1-p)log(1-p) ('18) 

1 
cR(k) = (19) p(1 -p)  

In this work, as in the previous ones, ~1'2) the hierarchy has been 
truncated to the first equation [Eq. (4)], relating the evolution of the free 
energy of the Q-system to the corresponding two-particle direct correlation 
function. In order to get a closed equation for the free energy we must sup- 
plement Eq. (4) with a closure relation involving the correlation function 
~Q(k). An approximation which is widely used in the theory of fluids is the 
optimized random-phase approximation (ORPA). 2 In terms of the direct 

2 See, e.g., ref. 6, and refs. 19 and 21 for the application to the lattice gas. 
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correlation function c(k) of the fully interacting system this amounts to 
setting 

c(k) = cR(k) + ~(k) + N(k) (20) 

where the quantity N(k) is determined for given density and temperature in 
such a way that the two-particle radial distribution function g(r) vanishes 
for small enough r in order to take into account the effect of the singular 
repulsive interaction vR(r). In the case of the lattice system with which we 
are dealing, this constraint, known as the core condition, involves only the 
point r = 0 and this implies that ~ is independent of k. For our closure 
relation we have chosen a sort of ORPA-like expression (2) 

We(k ) = ce(k) + rQ ~(k) + aQ (21) 

where zQ and a e are unknown functions of density and temperature for 
every Q-system. Since in our case the direct correlation function of the 
reference system cR(k) does not actually depend on k Esee Eq. (19)1, we 
can write 

ctfe(k) = Ee( p, T) + Be(p, T)[1 - 7(k)] (22) 

In order to determine the unknown quantities Ee(p, T) and Be(p, T), we 
require that our closure relation (22) satisfies two conditions which are 
related respectively to the long- and to the short-range behavior of the 
system, namely the thermodynamic consistency condition and the core 
condition we have just mentioned. 

For the theory to be thermodynamically consistent, the structure 
factor Se(k ) must satisfy the well-known compressibility sum rule for every 
Q-system. In terms of ~o(k) this condition reads 

% ( k  = 0) = EQ(p, T) - a ~ d e  t?p2 (23) 

If we use this condition in Eq. (4) we get a partial differential equation for 
the evolution of the free energy involving Ode/O Q and ~2dQ/t~p2. We 
expect the critical behavior yielded by the theory to be governed by the 
small-wavevector limit of cgo(k ) via the right-hand side of (4). In this limit 
Eq. (22) becomes 

~ d  e ~fe(k/~ --~p2~ + -B-~ k 2 (24) 

At the critical point the inverse compressibility is zero and (24) yields 
c ( k ) ~ k  2, provided B e tends to a finite limit. The closure relation (22) 
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implies then q = 0, i.e., the Ornstein-Zernike approximation: this can be 
somewhat justified by the small value o f  ~/ in three dimensions. In ref. 1 it 
was shown that the thermodynamic consistency requirement and the 
Ornstein-Zernike approximation fixing the small-k behavior of ego(k ) 
unambiguously determine the universal properties at the critical point 
predicted by the theory. An asymptotic analysis near the critical point in 
the spirit of the renormalization group shows that the HRT with an 
Ornstein-Zernike closure gives the correct critical exponents to linear order 
in e ( e = 4 - d )  in an expansion in dimensionality d, and in d =  3 the 
exponents have the values 

v = 0.689, 7 = 1.378, fl = 0.345, c5 = 5 (25) 

They differ from the correct values by about 10% and satisfy the scaling 
laws with ~/= 0. We have explicitly checked (see Section 3) that the critical 
exponents obtained in the present case agree with those in (25) given by 
the "asymptotic" theory. 

We now come to the core condition: in our case this requires that the 
two-particle radial distribution function go(r) vanishes at r = 0 for every 
Q-system due to the singular on-site repulsion vR(r) contained in the inter- 
action vo(r ). This condition can be written in terms of the direct correla- 
tion function co(k ) of the Q-system and hence, using (9), in terms of the 
modified quantity ego(k) to give 

f,~Q d3k 1 d3k 1 2 f + (26) 
(27~) 3 • ( k )  ~(k)  ~.# o0 ( -~3  eg~k) 

P P 

where ~3 is the first Brillouin zone of the lattice. 
Equation (4) and the closure relation (22) with the conditions (23), 

(26) give a dosed system of two nonlinear integrodifferential equations; our 
aim is now to cast this system in a more tractable form. We observe that 
due to the form (22) for ego(k ), the integrand on the right-hand side of 
Eq. (4) depends on k only via the nearest-neighbor Fourier transform 7(k), 
so that it is natural to choose the integration surfaces Z" o as those defined 
by 7(k)= Q, - 1  ~< Q ~< 1. The most straightforward way to introduce the 
fluctuations in the system would then be to start from the boundary of the 
Brillouin zone and to go inside. If we do this, however, the evolution of 
the free energy described by Eq. (4) turns out to be unstable over the whole 
region where 7(k) is negative, which corresponds to the first half of the 
integration path. This is a purely technical problem, which nevertheless 
does not allow for a direct numerical implementation of this procedure. In 
order to obtain the stability needed for numerical integration, the attractive 
part of the interaction has been introduced in the system starting from the 
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surface 7 (k )=0  inside the Brillouin zone and then moving toward the 
center and the boundary of the zone at the same time. This is achieved by 
choosing the region O e in Eq. (2) as given by 17(k)1 > - Q ,  - 1 ~< Q ~< 0. 
With this choice Eq. (4) becomes 

aQ 2 F(Q) (go(k),] I Y(k) = Q -[- log - - -  
~(k) ~1 

(27) 

where F(Q) is the density of states (see, e.g., ref. 7) 

d3k 
F(Q) = f~ cS(Q - 7(k)) (28) 

Since the core condition (26) must be satisfied for every Q, we can differen- 
tiate it with respect to Q to get 

f~ d3k 1 dC~Q f:,~ d3k 1 dC~Q 
(2~) 3 [ego(k)_ ~(k) ]  z dQ (k) + Q ~. ~Q (2~) 3 cg~(k) dQ (k) 

V ,~(k) F(Q ) L%(k)[%-~- ~(k)] ~;<~)=Q 
~(k) 

+ ~ o ( k ) [ C g 7  - ~ (k) ]  ,(k)= -Q] (29) 

The boundary term on the right-hand side of Eq. (29) is due to the 
discontinuity of the "true" direct correlation function cQ(k) on the surface 
SQ [see Eq. (9)]. 

In the previous work on simple fluids (z) the core condition was treated 
with an approximate scheme by decoupling small and large wavevectors k. 
In our case, on the other hand, the core condition can be handled more 
easily than in a real fluid because it involves, for every Q-system, only one 
point in the coordinate space instead of a finite interval and therefore can 
be implemented exactly (of course within the limits in accuracy implied by 
the numerical calculation). Our approach relies on the fact that Eq. (27) 
can be cast in the following form: 

OQ \ ap z / =  --z Q F(Q) ~p2 (30) 

which is obtained from Eq. (27) by differentiating twice with respect to p 
and defining re( p, T) as 

c~o(k)/I,tk, = o + l ~  cgQ(k)J 7(k)= -el (31) 
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If we combine Eqs. (29)-(31) and use the closure relation (22) for ~Q(k) we 
get a system of two differential equations in quasilinear form: 

(~2/)Q (~/)Q 
Op2 - C ( Q ,  v e, Be ) - -~+D(Q,  re, BQ) (32) 

~BQ OVQ 
OQ = K(Q, VQ, Be)-~-~ + L(Q, v o, Be) (33) 

where B e has been defined in Eq. (22). The detailed calculation and the 
explicit form of the coefficients C, D, K, and L are reported in the Appendix. 
Once the quantities v e and B e have been obtained, we can get ~?2de/Op2 
and hence the compressibility of the system by inverting Eq. (31). The 
integration of Eqs. (32), (33) must be performed from Q = 0  to Q =  -1 ,  
which correspond respectively to the reference and to the fully interacting 
system. From the exact expression (19) for the direct correlation function of 
the reference system, we get the following set of initial conditions: 

vQ=0=22[p(1 _p ) ]2  (34) 

Be_ 0 = - 2  (35) 

with 2 given by Eq. (17). The partial differential equation (32) must also be 
supplemented with suitable boundary conditions for the low- and high- 
density behavior of the quantity v o. At zero density the direct correlation 
function CR(k) of the reference system diverges [see Eq. (19)], so that Eqs. 
(9) and (31) yield 

r e ( p = 0 ) = 0  for every Q (36) 

Moreover, Eqs. (32), (33) preserve the symmetry with respect to p = 1/2 
shown in the initial conditions (34), (35), so that the integration with 
respect to the variable p can be restricted to the interval (0, 1/2) with the 
condition 

vQ(p) = re(1 - p) for every Q (37) 

The set of equations (32), (33) with the initial conditions (34), (35) and 
the boundary conditions (36), (37) has been solved numerically using a 
predictor-correcter implicit method ~8) for Eq. (32) and determining step by 
step the evolution of BQ by Eq. (33). The use of an implicit method does not 
cause a dramatic increase in the computations, thanks to the quasilinear 
form of Eq. (32), while it provides the remarkable advantage of numerical 
stability even below the critical temperature, where other algorithms are 
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much less accurate. In our numerical calculation we have checked that the 
core condition is indeed very well satisfied along with the evolution of the 
system over the whole density range. We find that for the fully interacting 
system at T -  T,. the radial distribution function g(r) at r = 0  is at most 
___3 x 10 -3 and at T-- 1.3 Tc it has already decreased by about an order of 
magnitude. For T <  T,. the situation gets worse, but in every case g(r = 0) 
does not exceed some 10 -2 for the temperatures we have investigated. 
It must be pointed out that below the critical temperature the correct 
integration of Eqs. (32), (33) is not at all a trivial task, due to the strong 
nonanalytic behavior inside the coexistence region (see also Section 4) 
and it is necessary to take great care in the evaluation of the coefficients 
C, D, K, L because they turn out to be affected by cancellations between 
extremely divergent quantities. 

3. RESULTS ABOVE Tc 

We have computed several quantities of the model both above and 
below T~. Our results have been compared with those obtained by other 
theories and by approximants based on extrapolation of perturbative 
expansions. These approximants can be regarded as the standard reference, 
since they describe the system with great accuracy. First of all we have 
located the critical point predicted by the theory. As we have already 
noted, Eqs. (32), (33) preserve the particle-hole symmetry p ~ 1 - p ,  thus 
ensuring that the critical density has the correct value p = 1/2 correspond- 
ing to zero magnetic field in the Ising model (we point out that not all 
theories satisfy this property(9)). The critical temperature determined by the 
divergence of the isothermal susceptibility )~T is equal tO kTc/6J=0.7553. 
This value has to be compared with the "exact" one, kTc/6J=0.7518, 
obtained by extrapolation of series expansions (see, e.g., ref. 10); the error 
is less than 0.5%. In Table I we compare our value of T,, with those 

Table I. Critical Temperature for the Three-Dimensional  Ising Model on a 

Simple Cubic Lattice as Given by Several Approximate Theories ~ 

Percus-Yevick ORPA Bethe Kikuchi (square) Kikuchi (cube) HRT Exact 

0.607 0.660 0.823 0.768 0.763 0.755 0.752 

a The fourth and fifth values are those from Kikuchi theory using, respectively, a square and 
a cubic cluster. The value listed for each theory is kTc/6J; mean field theory yields 
kT,/6J= 1. The Percus-Yevick and O R P A  values have been obtained, respectively, from 
refs. 9 and 19, while the Bethe, Kikuchi, and exact values have been taken from ref. 12. 

822/72/5-6-22 
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p 1 1 , i 1 1 _ _ 0 ~ -  14 -P3 . . . .  12 . . . .  rl . . . .  

Log,~(T/T~ - 1 )  

Fig. 1. Log-log plot of the zero-field reduced susceptibility Zred VS. reduced temperature 
T/Tc--1 close to the critical temperature To. Points: HRT. Solid curve: Fisher-Burford 
approximant. (4) 

obtained by other liquid-state theories applied to the system in hand, like 
the ORPA and the Percus-Yevick theories, (6) and by approaches expressly 
devised for lattice systems, namely the Bethe and the Kikuchi approxima- 
tions. (H'12) The critical exponent 7 has the universal value y=1.378 
[see (25)] valid within the class of Ornstein-Zernike approximations of the 
HRT hierarchy. (t) Figure 1 reports the reduced isothermal susceptibility 

2.5 ' ~ ' I . . . .  I ' ' ' ' I . . . .  

1.5 

0.5 

0 . 5  1 1 , 5  

H / k T ~  

Fig. 2. Reduced susceptibility Zred as a function of the dimensionless magnetic field H/kTc on 
the critical isotherm T =  T c. Points: HRT. Solid curve: Tarko-Fisher approxlmant. . i5) 
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i 

6 

0 ,5  t 1 .5  2 2 . 5  

Log~o(kT/J )  

Fig. 3. Zero-field reduced susceptibility Z~ed vs. dimensionless temperature kT/J for 
temperatures well above T c. Points: HRT. Solid curve: Fisher-Burford approximantJ 4~ 

Zrr =kTZT in zero field versus reduced temperature, together with the 
approximant given by Fisher and Burford. (4) At temperatures very close 
to Tc. a discrepancy can be seen due to the error in our value of y, the 
exact value being 7 - 1.25. In Fig. 2 we show our results for the reduced 
isothermal susceptibility on the critical isotherm compared with the 
approximant reported by Tarko and Fisher. {5) The value of the critical 
exponent 5 = 5 is again in agreement with (25) and slightly overestimates 
the exact one (b - 4.8). 

I 

"~ 4 I // 

! �9 
1 2 3 4 5 

k 

Fig. 4. Structure factor z(k)  in zero field vs. wavevector modulus k along the direction 
k x  = k y  = k z a t  a reduced temperature TIT c = 1 . 3 2 .  Dashed curve: ORPA. Points: HRT. Solid 
curve: Fisher-Burford , - (4) approxlmant. 
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0 1 2 3 4 5 

k 

Fig. 5. The same as in Fig. 4, but for T/T c = 1.03. At k = 0, ORPA, HRT, and the Fisher- 
Burford approximant yield, respectively, ;(tea =~((k =0)=418.4 (ORPA), Xrea= 85.7 (HRT), 
Zred = 79.5 (Fisher-Burford approximant). 

Let us consider now the behavior away from the critical point. In 
Fig. 3 the reduced susceptibility in zero field is plotted over a wide range 
of temperatures; at high temperature the Curie law typical of a system of 
noninteracting spins (our reference system) is correctly reproduced. In Figs. 
4 and 5 we show the magnetic structure factor x(k) in zero magnetic field 
along the direction kx = ky = kz for two different values of the reduced 
temperature, together with the results of ORPA (6) and the Fisher-Burford 
approximant. (4) We have checked that the agreement with the approximant 
remains unaltered as we consider different directions in the Brillouin zone. 

We can then say that above Tc the HRT with the closure relation (22) 
not only yields nontrivial critical exponents, but it also determines very 
accurately the nonuniversal behavior of the system and the critical tem- 
perature itself. In particular the results for the structure factor show that at 
temperatures not very close to Tc the Ornstein-Zernike approximation 
(22) for the present system can be considered very good. (4) 

4. R E S U L T S  B E L O W  Tc 

Below the critical temperature the question arises how the theory 
describes the first-order phase transition taking place in the system. In Figs. 
6a and 6b we show the evolution of two magnetization isotherms referring 
respectively to the cases Tc < T <  T ~  v and T <  Tc, where Tc My is the mean 
field value of the critical temperature given by k T ~ V / 6 j =  1. The initial 
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value Q = 0 corresponds indeed to the mean field approximation, while the 
final value Q = - 1  corresponds to the final stage of the integration, in 
which all the Fourier components of the attractive interaction are taken 
into account. We see that as long as long-wavelength fluctuations are 
included in the system the unphysical region where the susceptibility is 
negative is suppressed: the HRT is thus able to remove the van der Waals 
loop yielded by mean field theory. For temperatures in the range 

(a) 0 . 2  - - ,  , , I ' ' ' I ' ' ' 

0 . 1  

q = o  

O.l L , , , I , , , I , , , I , , , I L , , 
0 2  0 . 4  0 , 6  0 , 8  

M 

(b) 

0.1 - 

0 q = - i  

q = - o  a 6  

0 O.g 0.4 0.6 0,8 

M 

Fig. 6. Evolution of two isotherms above and below T, as function of the cutoff Q governing 
the inclusion of the long-range fluctuations. Edch curve is labeled by the corresponding value 
of Q. The curve with Q =0 corresponds to the mean field approximation and that with 
Q = - 1  to the fully interacting system. The dimensionless magnetic field H/kT is plotted vs. 
magnetization M for (a) T/T~.= 1.1 and (b) T/T,=0.93. 
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Fig. 7. 

0.8  

0 .6  

0 . 4 - -  

0 2  I 

0 , r i I , I i I i I ~ I i , i J i , i 
0 0 .2  0 .4  0 6  0 8  

T / I ' o  

Spontaneous magnetization M vs. dimensionless temperature T/Tc. Points: HRT. 
Solid curve: Pad6 approximant reported by Essam and Fisher. u3~ 

T c < T <  T~ v the loop disappears altogether, but below T~. it is replaced by 
a flat region where H =  0 and M # 0, which is nothing but the coexistence 
region. For  any given temperature T <  Tc the amplitude of the coexistence 
region can be determined unambiguously as the extension of the flat 
portion of the isotherm and this gives the value of the spontaneous 
magnetization M. In Fig. 7 the spontaneous magnetization as a function of 
temperature (i.e., the coexistence curve) is compared with a Pad6 approxi- 
mant for the same quantity. (t3) The critical exponent/~ is again found to be 
in agreement with the value /3=0.345 [see (25)] obtained from the 
asymptotic analysis and the scaling laws. The fact that the HRT has the 

c o r r e c t  scaling regime both above and below the critical temperature 
is clearly shown in Fig. 8: here we plot the scaling function h(x) which 
determines the equation of state in the critical region according to the 
expression H/kT~.=M~h(t/MI/~), where t is the reduced temperature 
( T -  Tc)/Tc. One can see that for small enough t the points from different 
isotherms all fall on the same curve; we remark that the two branches for 
t > 0 and t < 0 match very well each other. In the figure the approximants 
for h(x) given by Gaunt  and Domb (14)'3 is also shown; the discrepancy 

3 Actually the results reported by Gaunt and Domb refer to the body-centered cubic lattice; 
the lattice structure affects the nonuniversal features of the scaling function, namely the value 
x 0 such that h(xo)= 0 and the value h 0 = h(x = 0). Those values in turn depend, respectively, 
on the amplitudes of the spontaneous magnetization and the critical isotherm in the critical 
region. In order to take into account the influence of the lattice, the approximant has been 
properly rescaled; the amplitudes for the simple cubic lattice have been taken from ref. 10 
(spontaneous magnetization) and from ref. 20 (critical isotherm). 
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- 1  

L . . . .  i . . . .  i , '  ~ 1  . . . .  I . . . .  

L ~ 
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x 

Fig. 8. Semilog plot of the scaling function h(x). The abscissa x is equal to tiM 1/1~, while h(x) 
is given by H/(kTcM~); t is the reduced temperature  T/Tc-1, and /~ and 5 are the usual  
critical exponents.  The various points refer to H R T  results for different isotherms. 
Squares: t = 4.38 x 10-5. Triangles: t = 7.02 x 10 -5. Crosses: t = 2.03 x 10 4. Asterisks: 
t = -6 .21  x 10 -5. Pentagons:  t = -1 .95  x 10 -4. Circles: - 3 . 2 7  x 10 4. Solid line: Gaun t  and 
D o m b  approximant .  (14) 

between the two curves increases on increasing x, due to the error in the 
critical exponent 7. [We recall that one has h ( x ) ~ x  ~ for large x.] 

The behavior across the coexistence curve is investigated in more detail 
in Fig. 9, where we report the inverse reduced susceptibility as a function 
of the magnetization compared with the low-temperature expansion 
data (Is) in a small interval around the boundary of the coexistence region 
at a temperature kT/6J=0.47. We see that across this region the inverse 
susceptibility varies very steeply but remains nevertheless continuous and 
thus goes to zero even when we approach the coexistence curve from out- 
side, as happens in the case of X Y  and Heisenberg models. This gives rise 
to an infinite value of the zero-field susceptibility for every T~< Tc, in 
contrast with the true behavior of the system. We recall that the only 
approximation made in our calculation is the closure relation (22) for 
<gQ(k), which must then be responsible for this spurious result. Moreover, 
since the onset of the first-order phase transition is governed by the long- 
wavelength fluctuations, we expect that the relevant information entering in 
approximation (22) is the behavior of cgQ(k) in the small-k limit [see 
Eq. (24)]. We notice, however, that the dimensionality d of the system 
plays an important role as well, and for d >  4 a more realistic description 
of the first-order transition is found using the same kind of closure. (16) 
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, . . . .  / 

1 f / l / / /  

0.955 0.96 0.965 0.97 0.975 

M 

Fig. 9. Inverse reduced susceptibility ]/Zrea vs. magnetizcation M across the boundary of the 
coexistence region at a temperature kT/6J= 0.4?. Solid curve: HRT. Dashed curve: data from 
the low-temperature expansion. (iS) 

Although our choice for (gQ(k) is not flexible enough to model the 
correlations in the coexistence region, it is nevertheless interesting to 
observe that the nonanalytic behavior of the theory in this region strongly 
affects the coefficient Bo( p, T) in Eq. (22), which fixes the curvature of the 
direct correlation function. In fact putting in the core condition (26) 
EQ(p, T)=O and solving with respect to Bo(p, T) would yield for the 
completely interacting system the temperature-independent value 

Bo(p, T)= -6Wo/p(1 - p) "~ -1.5/p(1 - p )  

where W0 ~ 0.252731 is the Watson function in three dimensions, (7) W(x) 
for x = 0. However, in the coexistence region the limiting procedure with 
respect to Q does not commute with the integration in Eq. (26) and this 
gives rise to a completely different behavior for BQ : actually, it can be seen 
that inside the coexistence region BQ does not depend on density; more- 
over, it increases very rapidly in absolute value on decreasing temperature, 
causing the direct correlation function to be very steep near k = 0. This 
seems to indicate that as Q evolves, our direct correlation function tries as 
much as possible to reproduce the discontinuity at k = 0  inside the 
coexistence region shown by the true direct correlation function of the fully 
interacting system, which vanishes precisely at k = 0 but is finite in the 
k ~ 0 limit, u7) Of course, the attempt must ultimately fail, since the closure 
relation (22) for cgQ(k) is always a continuous function of k. 
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5. C O N C L U S I O N S  

We have applied the HRT with an Ornstein-Zernike closure to the 
three-dimensional Ising model both above and below To. Our results show 
that the theory describes with considerable accuracy several nonuniversal 
properties of the system; in particular the value of the critical temperature 
differs from the exact one by less than 0.5 % and so it is one of the most 
accurate between those yielded by approximate theories. At the same time 
the behavior in the critical region is much more realistic than in standard 
approximations, the critical exponents are not trivial, and the scaling 
regime is correct. The critical exponents are not very accurate, however, 
and this can be traced to the adopted closure, which implies that t/= 0. In 
order to go beyond this approximation one should take into account the 
second equation of the hierarchy. A particularly interesting feature of the 
HRT is that it retains the convexity of the free energy even below To, 
suppressing the van der Waals loop and replacing it with the plateau 
typical of the coexistence region as long as long-wavelength fluctuations 
are included in the system. The main shortcoming of our approach is that 
the simple from (22) assumed for the direct correlation function cannot 
describe the correlations inside the coexistence region in a realistic way 
and for a three-dimensional system it fails to reproduce the discontinuous 
jump of the inverse susceptibility across the coexistence curve. In fact, our 
approximation gives an infinite value of the susceptibility on the coexistence 
curve. This behavior would be appropriate for a system whose order 
parameter has more than one component. It might thus be interesting to 
apply the HRT with the same kind of Ornstein-Zernike approximation used 
here to other magnetic models, like X Y  or Heisenberg models or even Ising 
systems with competing interactions. ~18~ 
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A P P E N D I X  

In this Appendix Eqs. (32), (33) are derived in detail starting from 
Eq. (27) for the evolution of the free energy dQ and from the core 
condition (29). 
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Let us consider again Eq. (27): 

If we use the explicit expression of ~(k), 

,~(k) = ~ ( k ) ,  

and the closure relation 

then Eq. (A1) becomes 

0~ 
~Q 

Pini e t  al. 

+log (1 ~(k).'ll 
(A1) 

6w 
2 = - -  (A2) 

kT 

~Q(k) = EQ + BQ[1 -- ?(k)] (A3) 

1 F 2QZ(2BQ + 2) ] 
F(Q) log L 1 - ( E Q  + BQ~-~ ) 2-- B%QZJ (A4) 

We now differentiate Eq. (A4) twice with respect to p and take account of 
the thermodynamic consistency requirement 

to get 

~fQ(k = 0) = EQ(p, T) ~2dQ - 0p--- 5 (A5) 

where Z is defined as 

[ ,~(2Bo + A ) 231/2 
z= L 1-_e--OW~ Q + B~J 

(A9) 

OEQ 1 2 02vQ (A6) 
OQ = - 2  Q F(Q) ~p2 

where we have defined 

1 [ )LQ2(ZBQ + 2) ] (a7) 
v o = Q  -51~ L1 - - W ~ , 2 - -  ~- 2 tEQ+BQ) -BQQ 3 

The above relation can be inverted to express EQ in terms of vQ and BQ: 

Eo = QX - BQ (A8) 
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Using (AS) in the left-hand side of (A6) yields 

Q2 02VQ ~/')Q 
Op2 =C'(Q, Va, BQ)-~+ D'(Q, Vo, BQ) (AIO) 

where we have set 

C'(Q, v e, BO)= - 

D'(Q, VO, BQ)= - - - -  

)~Q3(2BQ + 2)e Q% 

F(Q)(1 - eQ2Ve)2 Z 

2 [DI(Q, vQ, BQ)+D2(Q, 
F(Q) 

OBo7 eo)Vd-] 

(All)  

(A12) 

and 

DI(Q, VQ, BQ) = 2Q2(2BQ + 2 )eO2vQ 
(1 --eQZvQ)2Z vQ + Z 

Dz(Q, vQ, BQ)=Q . l - e  ozvQ ~- BQ --1 

(A13) 

(A14) 

We now turn to the core condition (29), 

f~ d3k 1 d~Q d3k 1 dCgQ 
Q (27:) 3 [cdo(k ) _ $(k)]  z dQ (k) + f~�9 _ ~Q (2~) 3 W2(k)_ dQ (k) 

=F(Q) Icgo(k) $(k) + $(k) [%-~- ~(k)] ~(~)=Q %(kl[%-~-,~(k)] y(k) = -Q] 
(A15) 

Again we use in (A15) the explicit expressions (A2), (A3) for ~(k) and 
~Q(k) and recall that the region f2Q has been defined in Section 2 by 
[7(k)t > -Q ,  - 1 ~<Q ~<0, to get 

•EQ (~BQ 
R(Q, vo, B Q ) ~ + S ( Q ,  vQ, B Q ) ~ = H ( Q ,  vQ, Bo) (A16) 

where H, R, S are given by 

2F(Q)(1 - eQevQ)2z 
(A17) H(Q, vQ, BQ) = 2Q(2BQ +/~)e Q2vQ 

R(Q, VQ, BQ) = 2Q2z2I + 2(BQ + 2)2J+ M (A18) 

S(Q, vQ, BQ)=2Q2z2I+2(Bo+2)(BQ+2-2Q~)J+N (A19) 
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and/ ,  J, M, N are the following integrals: 

f e  ! 
I=  1 dx F(x) [Q2z 2 - (Be + 2)~x2] z (A20) 

f 
Q X 2 

J= -1 dx F(x) [Q2z2_ (Be + 2 )2 x2] 2 (A21) 

;Qe 1 
M = dx F(x) (0Z - Box)  2 (A22) 

f e e  1 - x (A23) N =  dx F(x) ( Q z _  Bex)  2 

If we combine Eqs. (A6) and (A16), we obtain 

OBQ 1 H(Q, v o, Be) + R(Q, v e, Be) Q2F(Q) c?p2 j 
OQ - S(Q, v e, BQ) "2 

(A24) 

Equation (A24) can be used in (A12) to eliminate OBo_/~? Q in favor of 
c~2vQ/~3p 2. Then Eq. (A10) becomes 

2 ~2UQ ~I)Q 
O ~ = C(O, vo, Bo) ff-~+ D(Q, vQ, BO) (A25) 

with the definitions 

C(Q, v e , B e) 

D(Q, vQ, Be)=  

C'S 

S + D ~ R  

2 D 1 S + D 2 H  
F(Q) S + D z R  

(A26) 

(A27) 

where we have understood the dependence on Q, vQ, B e in the above- 
defined quantities C', H, D1, O2, R, S. Finally, we use (A25) in (A24) to 
obtain 

C~ B Q C?V Q 
=K(Q, v e, Be)q-x~+L(Q, v e, Be) (A28) ~Q 

where 

l 
K(Q, "e, Be) = ~ F(Q) 

C'R 
S + D 2 R  

(A29) 
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H - D 1 R  
L(Q, vQ, BQ)= S + D2R  (A30)  

E q u a t i o n s  (A25)  a n d  (A28)  are the q u as i l i n ea r  e q u a t i o n s  for vQ a n d  BQ 

repo r t ed  in  Sec t ion  2. The  def in i t ions  (A26),  (A27),  (A29),  a n d  (A30)  give 
the explici t  express ions  of  the  coefficients C, D, K, a n d  L. 
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